GSFC · 2015 # An Introduction to Atomic Layer Deposition with Thermal Applications Dr. Vivek H. Dwivedi NASA GSFC Code 545 ## What is a Thin Film? Thin film: thickness typically <1000nm. Special properties of thin films: different from bulk materials, it may be — - Not fully dense - Under stress - Different defect structures from bulk - Quasi two dimensional (very thin films) - Strongly influenced by surface and interface effects # **Other Deposition Techniques** ## **Common Denominator** - •Deposition only occurs on substrates that "see" the target. - •Plasma process can damage the substrate - Poor thickness control - Poor Step Control - •High Pressure High Temperature Environment Step coverage of metal over non-planar topography. - (a) Conformal step coverage, with constant thickness on horizontal and vertical surfaces. - (b) Poor step coverage, here thinner for vertical surfaces. # Introduction **Atomic** Layer **D**eposition A thin film"nanomanufacturing" tool that allows for the conformal coating materials on a myriad of surfaces with precise atomic thickness control. # Based on: - Paired gas surface reaction chemistries - Benign non-destructive temperature and pressure environment - Room temperature -> 250 °C (even lower around 45 °C) - Vacuum # **ALD Procedure** - A or B exposure = Half Cycle - A+B = Full Cycle = 1 Monolayer - Digital Process: ABABABAB - Not Line of Sight, EVERYTHING GETS COATED - Substrate Independent # **Periodic Table of ALD Films** | H
1 | | | D:Oxide | | C:Car | | | | | | | | | | | | He
2 | |----------------|---------------|----------------------|---|------------------|---|-----------------|-----------------|----------------|---------------------|-----------------|---------------------|-----------------|-----------------|-----------------|-----------------|---------------|-----------------| | Li
3 | Be
4 | M:Metal P:Phosphide/ | | | F:Fluoride
D:Dopant
'Asenide
elenide/Telluride | | | | | | | | C 6 | N
7 | O
8 | F
9 | Ne
10 | | Na
11 | Mg
12
F | 0 | Recipe for this material is available from CNT staff or customer base | | | | | | | | | | | | | | Ar
18 | | K
19 | Ca
20
F | Sc 21 | Ti
22 S | V
23 | Cr
24 | Mn
25 | Fe
26 | Co
27 | Ni
Ni
28 | Cu
29 S | Zn
30
F D | Ga
P 31 | Ge
32 | As
33 | Se
34 | Br
35 | Kr
36 | | Rb
37 | Sr 38 5 | Y
39 | Zr
40 | N Nb 41 | MO
42 | Tc
43 | 0 M
Ru
44 | Rh
45 | Pd
46 | Ag
47 | Cd s | In
P 49 S | Sn 50 5 | Sb
51 | Te 52 |
53 | Xe 54 | | Cs 55 | Ba
56 | La
57 S | Mf
72 S | Ta 73 | W 74 | Re
75 | Os
76 | O M | Pt 78 | Au
79 | Hg s | TI
81 | Pb s | Bi
83 | Po
84 | At
85 | Rn
86 | | Fr
87 | Ra
88 | Ac
89 | Rf
104 | Db
105 | Sg
106 | Bh
107 | Hs
108 | Mt
109 | | | | | | | | | | | | | | | Ce
58 | o
Pr | Nd | Pm | Sm | o
Eu | Gd | o
Tb | Dy | Ho | Er | o
Tm | Yb | Lu | | | vloda | | | Th 90 | 59
Pa
92 | 60
U
93 | 61
Np
94 | 62
Pu
95 | 63
D
Am
96 | 64
Cm
97 | 65
D
Bk
98 | 66
Cf
100 | 67
Es
101 | 68
Fm
102 | 69
Md
104 | 70
No
4 | 71
Lr
4 | #### Acknowledgements - Gordon, Roy (2008). Atomic Layer Deposition (ALD): An Enable for Nanoscience and Nanotechnology. PowerPoint lecture presented at Harvard University, Cambridge, MA. - Elam, Jeffrey (2007). ALD Thin Film Materials. Argonne National Laboratory # **Advantageous Property** **Precise Thickness Control** Thickness = \mathcal{F} (# monolayers) **Example:** If 1 monolayer = 1 A # monolayers = 7 Thickness = 7 A Reproducibility # **Advantageous Property** # **Advantageous Property** # **Epitaxial Growth** #### Artificial trench filled with an ALD nanolaminate Image courtesy of Aalto University (FI) Multilayer consisting of: Al2O3 - 25 nm TiN - 20 nm Al2O3 - 25 nm Dr. Fred Roozeboom, NXP Semiconductors Research and Dr. Erwin Kessels, University of Technology, Eindhoventd Al,O, Schematic of a 3D battery integrated in a Si- substrate. The cross-section shows the various functional layers in the battery stack as well as the candidate materials. Knoops, H.C.M. et al., ECS Trans., 25 (2009) pp. 333-344 #### **Batch Process** Coating Silver with Aluminum Oxide http://www.glassonweb.com/ # **Building off a Commercial Reactor** # **Commercial Options** # **In-House Experimental ALD System** # **Thermal Applications and Results** # **Passive Thermal Films** # **ZnO** $E = \frac{hc}{\lambda}$ where: $f = frequency in Hertz (Hz = \frac{1}{sec})$ λ = wavelength in meters (m) c = the speed of light (299792458 m/s) **E** = energy in electron Volts (eV) h = Plank's constant $(6.626068 \times 10^{-34 \text{ m}^2\text{kg}})_s$ # **Blacker Than Black Carbon Nanotubes** #### Fe ALD on Complex Geometries for Carbon Nanotube Growth Substrate + Catalyst + Gas = CNNT Si,Ti, flat, 3d + Iron + Ethylene #### Blacker than NASA Z306 Paint 10X Darker # **Atomic Oxygen Protection** 100 nm on Kapton 1000 Cycles 155 °C Al₂O₃ GPM Funded an experiment at Glenn to determine AO effects on materials. 99% mass retention after a simulated 5 year flux # **Questions?**